Visual Analytics for Explainable Deep Learning
نویسندگان
چکیده
Recently, deep learning has been advancing the state of the art in artificial intelligence to a new level, and humans rely on artificial intelligence techniques more than ever. However, even with such unprecedented advancements, the lack of explanation regarding the decisions made by deep learning models and absence of control over their internal processes act as major drawbacks in critical decision-making processes, such as precision medicine and law enforcement. In response, efforts are being made to make deep learning interpretable and controllable by humans. In this paper, we review visual analytics, information visualization, and machine learning perspectives relevant to this aim, and discuss potential challenges and future research directions.
منابع مشابه
Explainable Software Analytics
Software analytics has been the subject of considerable recent attention but is yet to receive significant industry traction. One of the key reasons is that software practitioners are reluctant to trust predictions produced by the analytics machinery without understanding the rationale for those predictions. While complex models such as deep learning and ensemble methods improve predictive perf...
متن کاملP-V-L Deep: A Big Data Analytics Solution for Now-casting in Monetary Policy
The development of new technologies has confronted the entire domain of science and industry with issues of big data's scalability as well as its integration with the purpose of forecasting analytics in its life cycle. In predictive analytics, the forecast of near-future and recent past - or in other words, the now-casting - is the continuous study of real-time events and constantly updated whe...
متن کاملVisual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers
Deep learning has recently seen rapid development and significant attention due to its state-of-the-art performance on previously-thought hard problems. However, because of the innate complexity and nonlinear structure of deep neural networks, the underlying decision making processes for why these models are achieving such high performance are challenging and sometimes mystifying to interpret. ...
متن کاملEvolutionary Visual Analysis of Deep Neural Networks
Recently, deep learning visualization gained a lot of attentions for understanding deep neural networks. However, there is a missing focus on the visualization of deep model training process. To bridge the gap, in this paper, we firstly define a discriminability metric to evaluate neuron evolution and a density metric to investigate output feature maps. Based on these metrics, a level-ofdetail ...
متن کاملDeepGaze II: Reading fixations from deep features trained on object recognition
Here we present DeepGaze II, a model that predicts where people look in images. The model uses the features from the VGG-19 deep neural network trained to identify objects in images. Contrary to other saliency models that use deep features, here we use the VGG features for saliency prediction with no additional fine-tuning (rather, a few readout layers are trained on top of the VGG features to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018